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ABSTRACT: In this paper, a multiwavelength erbium-doped fiber laser
based on a microstructure fiber Bragg grating (FBG) is proposed and
demonstrated. The fiber Bragg grating is fabricated in a large-air-hole
microstructure optical fiber using the phase-mask method. The laser
based on this novel grating can be designed to achieve a three-wave-
length output at room temperature. The lasing wavelengths of the chan-
nels are 1557.84, 1555.07, and 1552.70 nm, respectively, and the wave-
length separation is about 2 nm. © 2005 Wiley Periodicals, Inc.
Microwave Opt Technol Lett 46: 162-164, 2005; Published online in
Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.
20931
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1. INTRODUCTION

Multiwavelength fiber lasers are useful sources in wavelength-
division-multiplexed (WDM) fiber-communication systems, fiber
sensors, and optical-instrument testing. With regard to wave-
length-selection components for lasers, fiber Bragg gratings
(FBGs) are ideal ones due to the unique advantage of fiber com-
patibility. Various techniques have been proposed to realize mul-
tiwavelength oscillations by utilizing cascaded FBG cavities [1],
polarization-dependent loss element [2], an FBG written in a
birefringent fiber [3, 4], a sampled FBG [5], two overlapping
cavities composed of two FBGs with a common gain medium [6],
and FBG fabricated in a few-mode fiber [7].

Air-silica microstructure fibers are all-silica fibers which con-
tain air voids that run along the length of the fiber. Such novel
optical fibers differ from traditional fibers with regard to their
optical properties, due to the effect of the structure of the fiber
cladding on the spatial distribution and the effective refractive
indices of cladding mode, thus increasingly attracting attention to
this class of fiber-waveguide structures. Recently, increased inter-
est has focused on the guidance properties of the cladding modes.
The inscription of both FBG and long-period grating in micro-
structure fibers with different geometrical cross sections has been
reported [8—11]. In this paper we choose a “grapefruit” fiber,
which is a typical large-air-hole microstructure fiber, for fabrica-
tion of an FBG in the photosensitive core using the phase-mask
method. The grating formed in this novel waveguide shows mul-
tiple resonances in both its transmission and reflection spectra, as
compared to conventional FBGs in single-mode fibers. This FBG
is incorporated into an Erbium-doped fiber-laser cavity as a wave-
length-selective component for the first time, to the best of our
knowledge. The proposed laser can be made to operate with a
three-wavelength output at room temperature. The lasing wave-
lengths of the oscillations are 1557.84, 1555.07, and 1552.70 nm,
respectively, and the wavelength separation is about 2 nm. The
output powers for the three wavelengths are —5.2, —3.1, and —4.1
dBm, respectively.
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Figure 1 Cross section of the 125-um-diameter grapefruit fiber

2. FABRICATION OF THE FBG IN MF

An FBG based on microstructure fiber was fabricated using the
phase-mask technique. The fabrication setup was not different
from that used in the fabrication of a conventional fiber grating. A
248-nm UV beam generated by an EXCISTAR M-100 KrF exci-
mer laser was focused by a cylindrical lens and exposed to the core
of the MF through a phase mask. The UV exposure energy density
was 40 mJ per pulse and at a repetition rate 10 Hz. The period of
phase mask is 1.072 um.

Figure 1 shows a cross section schematic of the “grapefruit”
air-silica microstructure fiber. It incorporates six large air holes
that form an approximately 38-um air annuls around a central
silica region 27 wm in diameter. The center of this region contains
a germanium-doped, single-mode core of diameter ~6.6 wm and
A~0.0043, where A denotes the index change of the fiber core
caused by the germanium doping. Considering the scatting of the
UV light caused by these air holes, the fiber was treated in 120 atm
of H2 at room temperature for several days in order to enhance the
photosensitivity of the germanium region.

The measured reflection spectrum of the FBG in grapefruit
microstructure fiber is shown in Figure 2. As can be seen from the
figure, multiresonance peaks are observed, which are different
from those of conventional single-mode FBGs. The three resonant
wavelengths measured are 1557.84, 1555.07, and 1552.70 nm,
respectively. Using a full-vector finite element method, the reso-
nance labeled “A” corresponds to the coupling between the prop-
agating fundamental mode and the antipropagating fundamental
mode, while “B”” and “C” correspond to the coupling between the
fundamental mode and some of the low-order cladding modes.
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Figure 2 Measured reflection spectrum of the FBG in microstructure
fiber
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Figure 3 Schematic diagram of the linear cavity Er-doped fiber laser

This is due to the unusual air-silica geometry of MF. In effect, the
large air holes form an effective inner cladding and small amount
of light from these cladding modes leak out of the webbing
between the holes. Consequently, the cladding modes confined in
the small-diameter silica region have relatively large overlap with
the core mode.

3. LASER CONFIGURATION

The configuration of the proposed laser is shown schematically in
Figure 3. The linear cavitey laser is constituted of a sagnac fiber
loop (SFL), a WDM couplor, 5 m of EDF with an erbium-ion
concentration of 400 ppm, and an FBG in microstructure fiber. The
SFL acts as a broadband reflector for signals and the FBG is used
for wavelength selection and the output coupler. The fibers in the
cavity were all single-mode fibers, except the grapefruit fiber used
for FBG fabrication. The 5-m-long Erbium-doped fiber provided
the gain media and was pumped by a 1480-nm laser diode via a
1480/1550-nm WDM coupler. At the point marked by a cross in
Figure 3, the conventional fiber was not spliced directly to the
microstructure fiber, and we adjusted the position of the two
segments by fine-tuning the control device. The laser’s spectral
characteristic was monitored using an ADVANTEST Q8383 op-
tical spectrum analyzer with 0.1-nm resolution.

4. RESULTS AND DISCUSSION

The output spectrum of the proposed laser schematized in Figure
3 is measured. At first, we spliced the conventional fiber directly
with the microstructure fiber at the breakpoint marked in Figure 3
and only one lasing wavelength of 1557.84 nm was observed. We
thought this was due to the differences of reflectivity between the
three reflection peaks, which can be obviously observed from the
spectrum shown in Figure 2. In order to resolve this problem, we
broke the welding point and used a fine-tuning control device to
adjust the fiber’s position. Using this method, the cross section
between the single-mode fiber and the MF can be slightly offset to
form an unmatched mode area, which results in the depression of
the reflectivity of the main reflection peak.
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Figure 4 Output of Er-doped fiber laser based on microstructure fiber
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Figure 5 Measured transmission spectrum and reflection spectra of the
FBG inscribed in grapefruit microstructure fiber: (a) transmission spec-
trum; (b) reflection spectrum

As can be seen from Figure 4, when the position of the fiber
was adjusted appropriately, the multiwavelength operation of the
EDFL at room temperature was obtained. The wavelengths of
lasing outputs were 1557.84, 1555.08, and 1552.92 nm, respec-
tively. We found the lasing oscillations marked by “A*” and “B*”
were consistent with the reflection peaks of the FBG with the mark
of “A” and “B,” but a slight wavelength drift could be observed
with regard to the third wavelength output. This may be due to the
change of the coupling cladding-mode’s order caused by the
unmatched mode area. The output powers were about 0.30, 0.49,
and 0.39 mW, respectively, and there was no obvious variation in
each resonance wavelength. We considered the principle to be
analogous to multiwavelength Erbium-doped fibers based on mul-
timode-fiber gratings, which have been widely studied [12-14].

By improving the fabrication technology, another FBG was
formed successfully in the same fiber. Figure 5 shows the mea-
sured transmission and reflection spectra written for the second
time. As compared to the first one, the phenomena of multiple
resonant peaks were more obvious and the wavelength differences
between the two gratings was attributed to the error introduced in
the process of grating inscription and the tiny inhomogeneity of the
fiber. These results will be used in further research.

5. CONCLUSION

In conclusion, a multiwavelength Erbium-doped fiber laser based
on a microstructure-fiber grating has been proposed and demon-

strated. The novel FBG can be conveniently fabricated using the
traditional phase-mask method, the laser can operate with a three-
wavelength laser output at room temperature, and the wavelength
separation is about 2 nm. This method has a simple configuration,
as compared to many other techniques.
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